
Introduction to FORTRAN
A Brief Summary of GNU FORTRAN

Ashik Iqubal

Department of Physics
Ramakrishna Mission Vivekananda University

Belur Math, Howrah

ashik.iqubal@gmail.com

August 31, 2012

FORTRAN: Data Types

INTEGER

REAL

COMPLEX

CHARACTER

LOGICAL

A. Iqubal FORTRAN

FORTRAN: Data Type Examples

Integer INTEGER :: variable1, variable2,

Real REAL :: variable1, variable2,

Complex COMPLEX :: variable1, variable2,

Character CHARACTER(len=character length) :: variable1, variable2, ..

Logical LOGICAL :: variable1, variable2,
LOGICAL :: FLAG
FLAG = .TRUE. or .FALSE

Arrays REAL, DIMENSION(10) :: VAR

A. Iqubal FORTRAN

FORTRAN: Arithmetic Operators

+ Addition

– Subtraction

* Multiplication

/ Division

** Exponentiation

A. Iqubal FORTRAN

FORTRAN: Conditional IF Statement

Code

IF (condition) THEN
statements
END IF

statements are evaluated if condition is true

A. Iqubal FORTRAN

FORTRAN: Nested Conditional Statement

Code

IF (condition1) THEN
statements block 1
ELSE IF (condition2) THEN
statements block 2
.....
ELSE
statements
END IF

A. Iqubal FORTRAN

FORTRAN: Named Block IF Conditional Statement

Code

[label:] IF (condition1) THEN
statements block 1
ELSE IF (condition2) THEN [label]
statements block 2
.....
ELSE [label]
statements
END IF

A. Iqubal FORTRAN

FORTRAN: Relational Operators

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal to

/ = not equal to

A. Iqubal FORTRAN

FORTRAN: Logical Operators

.AND. AND

.OR. OR

.EQV. Logical Equivalence

.NEQV. Logical Non-Equivalence

.NOT. NOT

A. Iqubal FORTRAN

FORTRAN: Order of Evaluation

1 All arithmetic operations are evaluated first from left to right

2 All relational operators are evaluated working from left to right

3 All .NOT. operators are evaluated

4 All .AND. operators are evaluated working from left to right

5 All .OR. operators are evaluated working from left to right

6 All .EQV. and .NEQV. operators are evaluated working from
left to right

Parenthesis can be used to change the default order of evaluation

A. Iqubal FORTRAN

FORTRAN: DO Loops

Code

DO
statements
IF (exit-condition) EXIT statements
END DO

(Repeatedly) executes statements between DO and END DO until
exit-condition is true

A. Iqubal FORTRAN

FORTRAN: DO WHILE Loops

Code

DO WHILE (condition)
statements
END DO

If condition is true, repeatedly executes statements between DO
and END DO

A. Iqubal FORTRAN

FORTRAN: Iterative Loops

Code

DO index = istart, iend, increment
statements
END DO

1 index = istart

2 if index*increment < iend*increment , then it executes the
statements

3 index = index + increment

4 Repeat steps 2 - 3

A. Iqubal FORTRAN

FORTRAN: Named Loops

Code

[label:] DO index = istart, iend, increment
statements
IF (cycle-condition) CYCLE [label]
statements
IF (exit-condition) EXIT [label]
statements
END DO

A. Iqubal FORTRAN

FORTRAN: Named Loops contd.

Code

[label:] DO
statements
IF (cycle-condition) CYCLE [label]
statements
IF (exit-condition) EXIT [label]
statements
END DO

A. Iqubal FORTRAN

FORTRAN: CYCLE and EXIT Statements

EXIT statement exits loops block, jumping immediately to
the next statement outside of the loop.

CYCLE statement continues the loop after skipping the
remaining statements in its current iteration.

GOTO statement transfers control to another part of the
program

A. Iqubal FORTRAN

FORTRAN: Function

Code

FUNCTION function-name (input-variables)
IMPLICIT NONE
REAL/INTEGER, INTENT(IN) :: input-variables
REAL/INTEGER, :: function-name
statements
function-name = expression
END FUNCTION function-name

A. Iqubal FORTRAN

FORTRAN: Recursive Function

Code

RECURSIVE FUNCTION function(input-var) RESULT(answer)
IMPLICIT NONE
REAL/INTEGER, INTENT(IN) :: input-var
REAL/INTEGER :: answer
statements
answer = expression
END FUNCTION function

A. Iqubal FORTRAN

FORTRAN: Subroutine

Code

SUBROUTINE subroutine-name (input-variables, output-variables)
IMPLICIT NONE
REAL/INTEGER, INTENT(IN) :: input-variables
REAL/INTEGER, INTENT(OUT) :: output-variables
REAL/INTEGER, INTENT(INOUT) :: common
input/output-variables
statements
END SUBROUTINE subroutine-name

Using RETURN in the subroutine returns to the calling program
Subroutines can be called anywhere in the program by using :

Code

CALL subroutine-name(input-variables, output-variables)

A. Iqubal FORTRAN

FORTRAN: Recursive Subroutine

If the subroutine is used recursively, then use

Code

RECURSIVE SUBROUTINE subroutine-name (variables)
declarations and statements
END SUBROUTINE subroutine-name

A. Iqubal FORTRAN

FORTRAN: Subroutine contd.

Subroutines/Functions are generally placed at the end of the
program after using a CONTAINS statement

Code

main program
.......
CONTAINS
SUBROUTINE subroutine-name (variables)
........
END SUBROUTINE subroutine-name
END

A. Iqubal FORTRAN

