

Computational Physics

What is Computational Physics?

Basic Computer Hardware

Operating Systems

Programming Languages

Problem solving environment

What is Computational Physics?

“Computational Physics is a synthesis of
theoretical analysis, numerical algorithms and
computer programming.”

P. L. DeVries, Am. J. Phys. vol 64, 364 (1996)

Computational Physics is a tool for
solving complex numerical problems in
Physics.

Why do we need Computational
Physics?

 Physics tries to describe how nature works
 Often we need mathematical equation

(unless you are a poet or philosopher)
 Using equations we create models to describe

nature
 Exact (analytic) solutions are very rare unless

a model is a simple one

Why do we need Computational
Physics?

 Therefore we need computational physics
when :

✔ we cannot solve the problem analytically
✔ we have too much of data to process

Many, if not most, problems in contemporary
physics could never be solved without computers.

Computational physics in
contemporary physics

 Numerical calculations: solutions of well defined
mathematical problems to produce numerical solutions.
Ex. Differential equations, integrations,

 Visual animations: the human eye and the visual
processing power of the brain is a very sophisticated tool.
Ex. 2D & 3D plots, animations, colour schemes & textures

 Computer simulations: testing models of nature. Ex.
Weather forecast

 Data collection and analysis: in experimental research

 Symbolic manipulation: Ex. Mathematica, Maple

Classification of Computer Models

 Deterministic or Stochastic Models
➔ Deterministic Models: Outcome of deterministic

models depend on initial conditions
➔ Stochastic Models: an element of randomness exists
 Dynamic or Static Models
➔ Dynamic Models: changes in time
➔ Static Models: does not change in time

Computer simulations (few
examples)

✔ Molecular Dynamics simulation
✔ Weather forecast
✔ Design of complex systems (aircraft,..)
✔ Financial markets
✔ Traffic
✔ Games

More...

 Many natural phenomena are non-linear, and a small
change in a variable might produce a large effect.

But just few non-linear problems can be solved
analytically.

 Systems with many variables or many degrees of
freedom are interesting.

Millennium Simulation – Largest N-body
simulation carried out thus far (more than 1010
particles)

Millennium Run

 The Millennium Run used more than 10 billion particles to
trace the evolution of the matter distribution of the
University of size 2 billion light-years.

 It took the principal supercomputer at the Max Plank
Society's Supercomputing Centre in Garching, Germany
more than a month.

 By applying sophisticated modelling techniques to 25Tb of
stored output, scientists were able to recreate evolutionary
histories for 20 million or so galaxies and for the
supermassive black holes which occasionally power
quasars at their hearts.

Computer Basics

 Hardware – Amazing progress. Twice
processing power in 18 months. (Moore's Law:
density at min. cost of transistors on IC's
doubles every 2 years)

 Do we have twice more results in Physics
every 18 months?

Computers in computational physics

 Desktop Computer (OS: Linux/Unix, BSD,..)

 Clusters (OS: Linux) – set of connected
computers that work as a single system

 Supercomputers (OS: Linux/Unix)

Basic Computer Hardware

Northbridge/Southbridge Layout

Motherboard

Hardware (internal)

 CPU – Central Processing Unit (in GHz), cache memory
– cache 1, cache 2

 RAM – Random Access Memory (in GB or MB)
communication with CPU by bus (MHz)

 PCI – Peripheral Component Interconnect

 USB – Universal Serial Bus

 HDD – Hard Disk Drive

 Graphics Card

 Network Interface (GB/s or MB/s)

Hardware (peripheral)

 Keyboard (I/O)
 Mouse (I/O)
 Printer (I/O)
 Monitor (Graphics Card)
 Ethernet (Network)
 Scanner, external storage, ..

Critical Hardware components for
computations

 Desktops

CPU, RAM, FSB (Front-side bus) speed
 Clusters

CPU & RAM

No. of CPUs

Fast communication between nodes

Software

Software: Operating Systems

Operating system – common features:
 Process management
 Memory management
 Interrupts
 File system
 Device Drivers
 Networking (TCP/IP, UDP)
 Security (Process/Memory protection)
 I/O

Operating System

Types of Operating System

 Multi-User: Allows multiple users to access computer
system concurrently

 Multi-tasking: Allows multiple programs to run
concurrently

 Multi-processing: Supports multiple programs on more
than one CPU

 Multi-threading: Allows different parts of a single
program to run concurrently

 Real Time: Aims at executing real-time applications

Comparison of some popular OS

Multi-user Multi-
tasking

Multi-
processing

Multi-
threading

Real Time License

Linux/Unix Yes Yes Yes Yes Yes (some
distros)

GNU
Public

License
(GPL)

Micro$oft
Windows

No Yes Limited No No proprietary

Mac OSX No Yes Limited No No proprietary

Supercomputer OS

Top 500 Supercomputers

Linux Unix BSD Mixed HPC
Window

462 24 1 11 2

OS: timeline

GNU/LINUX: common features

 Multi-user (user accounts, multiple users logged in
simultaneously)

 Multi-tasking (servers, daemons)
 GUI (X window system) & CLI (shell)
 Hardware support
 Networking & Network servers
 Application support
 Robust, stable, secure & scalable

GNU/LINUX: brief history

 1983 – Richard Stallman started the GNU Project. Goal to create
completely “free” Unix-compatible software system.

 1985 – Stallman started Free Software Foundation and wrote the GNU
Public License (GPL) by 1989

 By 1990 most programs required in an OS was completed except the kernel
 1991 – Linux Trovalds then graduate student at University of Helsinki,

initiated work on Linux kernel
 Developers worked to integrate GNU components with Linux kernel to form a

fully functional and “free” GNU/LINUX operating system

GNU/LINUX Distros

GNU/LINUX Distro timeline

GNU/LINUX and Computation

 Supercomputers
 Clusters
 Desktops
 Servers
 Compilers
 Applications

GNU/LINUX: basic use

 Graphical User Interface (X window system)

Desktop Environments: Gnome, XFCE, KDE,
LXDE,...

Crtl + Alt + F7
 Command Line Interface (shell)

Crtl + Alt + F1 to F6

Shell commands

 Shell commands are case sensitive
 Getting help on some command:

man command
 Directory listing: ls -a -l -h
 Copying file: cp -r -i source destination
 Moving file: mv -i source destination
 Creating Directory: mkdir directory-name
 Deleting file: rm -i file-name
 Changing Directory: cd directory-name
 Changing file permission: chmod ugoa +/- rwx filename
 Changing password: passwd
 Exiting shell or logout: exit

File system hierarchy

 /root – root user's home directory
 /dev – essential devices
 /boot – boot loader files, eg. kernel
 /etc – system-wide configuration files
 /proc – virtual filesystem documenting kernel & process status as text files
 /bin – common Linux command binaries
 /sbin – essential system binaries
 /lib – libraries essential for binaries in /bin and /sbin
 /var – variable files whose content continually changes during operation, eg. logs
 /usr – user applications
 /home – users home directories
 /media – mount point for removable media, eg. cdrom, usb drive,

File system hierarchy

Read only file viewers

 less file-name
 more file-name
 cat file-name – concatenates file and prints to

standard output
 tail -f file-name – outputs (& follows) last portion

of a file
 diff file-name1 file-name2 – compare files line

by line

File editors

 pico – text based editor for beginners
 nano – text based editor for beginners
 vi – text based editor for advanced users
 gvim – GUI for vi editor
 emacs – graphical editor
 gedit – another graphical editor from Gnome

Anonymous Pipe

 Set of process chained by their standard streams
 Output of each process (stdout) feeds directly as input

(stdin) to next process
 Each connection implemented by an anonymous pipe |
 By default standard errror streams (stderr) of the

processes are merged and directed to the console, and
not passed through the pipe

 Ex. ls -al | grep file-name

Anonymous Pipe

Named Pipe (FIFO)

 Uses filesystem, unlike conventional anonymous
pipe

 Two separate processes can access the same
pipe by name

 Explicitly created using mkfifo or mknod
 mkfifo my_pipe
 Ex. ls -al > my_pipe

cat < my_pipe

I/O Redirection

 command > filename

Writes the output of command to filename
 command >> filename

Writes output of command to end of
filename

 command < filename

command takes input from filename

Shell

 Shell accepts commands and passes on to the
kernel

 Shell is a command language interpreter
 Tip: to find all available shells in your system,

type cat /etc/shells
 Tip: to find your current shell, type

 echo $SHELL

Shell script

 Sequential series of shell commands written
on a text file

Why shell script?

 Useful to create your own commands
 Can take input from user, file and output them

on screen
 Saves time
 Automates useful tasks
 System administration can also be automated

Shell script example

#

#

Script to print user information who currently login , current date & time

#

clear

echo "Hello $USER"

echo "Today is \c ";date

echo "Number of user login : \c" ; who | wc -l

echo "Calendar"

cal

exit 0

Variables in Shell

 System variables – created and maintained by
the operating system. Defined in CAPITAL
LETTERS

 User defined variables (UDV) – created and
maintained by the user. Defined in lower case.

System Variables
BASH=/bin/bash Our shell name

BASH_VERSION=1.14.7(1) Our shell version name

COLUMNS=80 No. of columns for our screen

HOME=/home/xxxx Our home directory

LINES=25 No. of columns for our screen

LOGNAME=students students Our logging name

OSTYPE=Linux Our Os type

PATH=/usr/bin:/sbin:/bin:/usr/sbin Our path settings

PS1=[\u@\h \W]\$ Our prompt settings

PWD=/home/students/Common Our current working directory

SHELL=/bin/bash Our shell name

USERNAME=vivek User name who is currently login to this
PC

User Defined Variables

Variable name = value

Rules for variables

 Variable name must begin with alphanumeric
or _ followed by alphanumeric

 No spaces on either side of =
 Case sensitive
 Special characters like ?,*, etc cannot be used
 NULL variable is defined as:

VAR=

VAR=””

Rules for variables

 Variable name must begin with alphanumeric
or _ followed by alphanumeric

 No spaces on either side of =
 Case sensitive
 Special characters like ?,*, etc cannot be used
 NULL variable is defined as:

VAR=

VAR=””

Print variables

echo $variable-name

Example

Script to test MY knowledge about variables!

#

myname=Vivek

myos = Debian

myno=5

echo "My name is $myname"

echo "My os is $myos"

echo "My number is myno, can you see this number"

Shell arithmetics

expr var1 math-operator var2

Ex. echo `expr 1 + 3`

About Quotes

 “ Double quotes Removes
meaning of
anything
enclosed
(except $
and \)

' Single quotes Anything
enclosed
remains
unchanged

` Back quotes To execute a
command

Examples of quotes

 echo “Today is date”
 echo “Today is `date`”

Read statement

read variable1, variable2, ….., variableN

Ex.

echo "Your first name please:"

read fname

echo "Hello $fname, Lets be friend!"

Conditional statement

if condition

then

 execute if condition is true or exit

 status is 0

else

 execute if condition not true

fi

Condition testing

test expression or [expression]

Works with integer, file types, character strings

Mathematical Comparators in
[expr]

-eq Equal to

-ne Not equal to

-lt Less than

-le Less than equal to

-gt Greater than

-ge Greater than equal to

String Comparisons in [expr]

string1 = string2 Equal to

string1 != string2 Not equal to

string string not null or not defined

-n string string not null and does exist

-z string string null and does exist

File testing in [expr]

-s file Non empty file

-f file File exists and not a directory

-d file Directory exists and not a file

-w file Writeable file

-r file Read only file

-x file Executable file

Logical Operators in Shell Scripts

! expression NOT

expresssion1 -a expression2 AND

expression1 -o expression2 OR

“For” Loop in Shell Script

for ((expr1; expr2; expr3))

do

….. execute until expr2 is true

done #evaluate expr3

Ex.

for ((i=0; i <= 5; i++))

do

 echo $i

done

“While” Loop in Shell Script

while [condition]

do

 Execute when condition is true

done

Wild Cards

 * Matches any string or
group of characters

? Matches any single
character

[...] Matches any one of
the enclosed
characters

Note: A pair of characters
separated with – denotes a
rangem ex. [a-c]
If first character is ^ or !, then
characters not enclosed is
matched, ex. [!a-r]

Exit status

 Once a command is executed, it returns two
types of values:

1. return value zero (0): command successful

2. return value non-zero: command
unsuccessful or error executing command

 This value is known as Exit Status
 To determine Exit Status, use $? variable of

shell

Example of Exit Status

 rm unknown-file

echo $?
 ls

echo $?

Shell script example
#!/bin/bash
This script clears the terminal, displays a greeting and gives information
about currently connected users. The two example variables are set and displayed.

clear # clear terminal window

echo "The script starts now."

echo "Hi, $USER!" # dollar sign is used to get content of variable
echo

echo "I will now fetch you a list of connected users:"
echo
w # show who is logged on and
echo # what they are doing

echo "I'm setting two variables now."
COLOUR="black"# set a local shell variable
VALUE="9" # set a local shell variable
echo "This is a string: $COLOUR" # display content of variable
echo "And this is a number: $VALUE" # display content of variable
echo

echo "I'm giving you back your prompt now."
echo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

