Computational Physics

What is Computational Physics?

Basic Computer Hardware
Operating Systems
Programming Languages

Problem solving environment

What is Computational Physics?

“Computational Physics is a synthesis of
theoretical analysis, numerical algorithms and
computer programming.”

P. L. DeVries, Am. J. Phys. vol 64, 364 (1996)

Computational Physics is a tool for
solving complex numerical problems in
Physics.

Why do we need Computational
Physics?
= Physics tries to describe how nature works
= Often we need mathematical equation
(unless you are a poet or philosopher)

= Using equations we create models to describe
nature

= Exact (analytic) solutions are very rare unless
a model is a simple one

Why do we need Computational
Physics?
= Therefore we need computational physics
when :
v we cannot solve the problem analytically

v we have too much of data to process

Many, if not most, problems in contemporary
physics could never be solved without computers.

Computational physics in
contemporary physics

Numerical calculations: solutions of well defined
mathematical problems to produce numerical solutions.
Ex. Differential equations, integrations,

Visual animations: the human eye and the visual
processing power of the brain is a very sophisticated tool.
Ex. 2D & 3D plots, animations, colour schemes & textures

Computer simulations: testing models of nature. Ex.
Weather forecast

Data collection and analysis: in experimental research

Symbolic manipulation: Ex. Mathematica, Maple

Classification of Computer Models

= Deterministic or Stochastic Models

> Deterministic Models: Outcome of deterministic
models depend on initial conditions

> Stochastic Models: an element of randomness exists
= Dynamic or Static Models

> Dynamic Models: changes in time

> Static Models: does not change in time

Computer simulations (few
examples)

Molecular Dynamics simulation
Weather forecast

Design of complex systems (aircraft,..)
Financial markets

Traffic

Games

More...

= Many natural phenomena are non-linear, and a small
change in a variable might produce a large effect.

But just few non-linear problems can be solved
analytically.

= Systems with many variables or many degrees of
freedom are interesting.

Millennium Simulation — Largest N-body
simulation carried out thus far (more than 10™
particles)

Millennium Run

= The Millennium Run used more than 10 billion particles to
trace the evolution of the matter distribution of the
University of size 2 billion light-years.

= |t took the principal supercomputer at the Max Plank
Society's Supercomputing Centre in Garching, Germany
more than a month.

= By applying sophisticated modelling techniques to 25Tb of
stored output, scientists were able to recreate evolutionary
histories for 20 million or so galaxies and for the
supermassive black holes which occasionally power
guasars at their hearts.

Computer Basics

= Hardware — Amazing progress. Twice
processing power in 18 months. (Moore's Law:
density at min. cost of transistors on IC's
doubles every 2 years)

= Do we have twice more results in Physics
every 18 months?

Computers in computational physics

= Desktop Computer (OS: Linux/Unix, BSD,..)

= Clusters (OS: Linux) — set of connected
computers that work as a single system

= Supercomputers (OS: Linux/Unix)

Basic Computer Hardware

cru (> Moterboara Chip W
o

i il

%51 PIEH

"1n;:l']t|ﬁﬂni:iu1

RAM USB

- pae) sopqdean

Northbridge/Southbridge Layout

W=

Northbridge

Motherboard

Graphics
card slot

Memory Slots

High-speed
graphics bus

ES(P & (==l Northbridge Memory

Express) bus

(memory
controller hub)

Internal
Bus

PCr
Bus Onboard

graphics
controller

=TelUjldalelgle fe =

PCt (1I/O controller
Bus hub)

Cables and
prorts leading
off-board

Ethernet
Audio Codec
CNMNMOS Memory

Fel Sl =@—===0 B e e e e e e e e e et

Super 1I/O

Serial Port
Parallel Port
Flash ROM Floppy Disk

(B1OS) Revboasd

Hardware (internal)

CPU — Central Processing Unit (in GHz), cache memory
— cache 1, cache 2

RAM — Random Access Memory (in GB or MB)
communication with CPU by bus (MHz)

PCIl — Peripheral Component Interconnect
USB — Universal Serial Bus

HDD — Hard Disk Drive

Graphics Card

Network Interface (GB/s or MB/s)

Hardware (peripheral)

Keyboard (I/O)

Mouse (I/O)

Printer (I/O)

Monitor (Graphics Card)
Ethernet (Network)
Scanner, external storage, ..

Critical Hardware components for
computations

= Desktops

CPU, RAM, FSB (Front-side bus) speed
= Clusters

CPU & RAM

No. of CPUs

Fast communication between nodes

Software

Program Developement C++, FORTRAN

Shell

\ \ Assembler
Dirivers

User Tnterface =

Utilities & Tools

System Services ™

Software: Operating Systems

Operating system — common features:
* Process management

= Memory management

= Interrupts

= File system

= Device Drivers

Networking (TCP/IP, UDP)

Security (Process/Memory protection)
/O

Operating System

Application

]

Operating System

{ T <

Hardware

Types of Operating System

Multi-User: Allows multiple users to access computer
system concurrently

Multi-tasking: Allows multiple programs to run
concurrently

Multi-processing: Supports multiple programs on more
than one CPU

Multi-threading: Allows different parts of a single
program to run concurrently

Real Time: Aims at executing real-time applications

Comparison of some popular OS

Linux/Unix

Micro$oft
Windows

Mac OSX

Multi-user

Yes

No

No

Multi-
tasking

Yes

Yes

Yes

Multi- Multi- Real Time License
processing threading
Yes Yes Yes (some GNU
distros) Public
License
(GPL)
Limited No No proprietary

Limited No No proprietary

Supercomputer OS

AIX

Top 500 Supercomputers

OS: timeline

1970 1980 1990 2000 Time

—1--| FreeBSD 7.2]

—| NetBSD 5.0 |

]—--| OpenBsD a5]
|

BSD family

—Pl BSD (Berkeley Software Distribution)

—={sunos 4.1.3]
Darwin
--1 MextStep 3.3
v MacOs X il
| Xenix OS |
Microsoft,/SCO GNU/HuUrd Klﬁ-_
| GNU Project
Richard Stallman I_.,_IEP"-IL.l.u"LIr'lnLl:nx: 2.6.30.1 I
:-_-_’_er'ilx ,' Linus Torvalds 3.1.3a
Andrew S, Tanenbaurm - - - -~ -=- - = =7~

IF!EE.earch Unix (Bell Labs) 10 |

l .-I Commercial Unix (&T&T)

System 11l & W family M

i — Al (1IBM L B.

GNU/LINUX: common features

Multi-user (user accounts, multiple users logged in
simultaneously)

Multi-tasking (servers, daemons)
GUI (X window system) & CLI (shell)
Hardware support

Networking & Network servers
Application support

Robust, stable, secure & scalai)le

GNU/LINUX: brief history

1983 — Richard Stallman started the GNU Project. Goal to create
completely “free” Unix-compatible software system.

1985 — Stallman started Free Software Foundation and wrote the GNU
Public License (GPL) by 1989

By 1990 most programs required in an OS was completed except the kernel

1991 — Linux Trovalds then graduate student at University of Helsinki,
initiated work on Linux kernel

Developers worked to integrate GNU components with Linux kernel to form a
fully functional and “free” GNU/LINUX operating system

GNU/LINUX Distros

' | | :
DA T egAO ﬁﬁ L IR
redhat MEPIS turblinux LunAR Evilentity debian caos/centos MiniKazit UTUTO
archiinux maniwall nnopp-xmganlﬂullnux DeLi Linux Hiweed 1_51“1‘“?.13?3’5"0"”{109

‘ -; rQ@
*Q 282 ®
Fedora SLAX Luuux P'“QE"YMMM FFIEEDUC }’CDI'IS
S o e e ®

EnGarde mandrakeline BeatrIX Linspire SUSE ¢35 @orER BearOps ASPI_lNUX kalango

Hd B » U g ® . @
' 4 0 \r.& J =

Slackintosh Frugaiware FOTESIONI PCLINUXOS Haydar Linux Sabayon ubuntu JULEX] blag

GNU/LINUX Distro timeline

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
M M Libranet .
Linux distro '
[] [] s
Astaro Freespire
imeline
Lindows Guadalinex
Wersion 7.2 by NPU (nonplusx@gmail.com) Ubuntu -
Far the latest version, visit kde-files org ., \—
Feel fi i dify and d. Mail f i Hubunty
el free to modify and spread. Mail me for
updates, corrections and source flwfcf files Edubtintu
Kubuntu *y
Based on "Linea del tiempo Distribucianes .
Linux" by A. Sandoval (microteknologias.cl) MEPIS SimplyMEPIS -
Additional info: distrowatch.com/wikipedia.org Damn Small Linux .
Symphony 0S5 .,
KNOPPIX ’
Debian Kanotix
LinEx Morphix
Progeny
Corel Xandros
P Yoper
Pardus
Puppy
Kate Linux KateOS
. Sorcerer /. Source Mage -
TAMU . Vector Lunar -
MCC Interim " . SLAX
5LS Minislack Zenwalk
Slackware ,. e
‘ Frugalware
S.u.S.E . SuSE . SUSE -
‘ i . opensUSE
Jurix Beehive " Sun JDS N
L . Enoch 4 RR4 / RR64 Sabayon
N . Stampede R R N ‘ Kororaa
GNU/Linux Yaadrasil * vidaLinux
Na P .
. CRUX
. . Rock Linux 3
Linux From Scratch

Y P LST
Caldera
Conectiva o S \
Mandrake ‘ K R N PCLinux0S \. Mandriva
Virtual + . _ i CentOS
United Linux Scientific
DLD / Delix / White Box
Red Hat ‘ Specif\x. rPath
Foresight Fox
Fedora Core
‘ Ekaaty
SELinux
‘ EnGarde h
Red Fla J e,
H aLinux
Peanut :
Turbolinux Yellow Dog
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

GNU/LINUX and Computation

Supercomputers
Clusters
Desktops
Servers
Compilers
Applications

GNU/LINUX: basic use

= Graphical User Interface (X window system)

Desktop Environments: Gnome, XFCE, KDE,
LXDE,...

Crtl + Alt + F7

= Command Line Interface (shell)
Crtl + Alt + F1 to F6

Shell commands

Shell commands are case sensitive
Getting help on some command:

man command

Directory listing: Is -a -I -h

Copying file: cp -r -i source destination
Moving file: mv -i source destination
Creating Directory: mkdir directory-name
Deleting file: rm -i file-name

Changing Directory: cd directory-name
Changing file permission: chmod ugoa +/- rwx filename
Changing password: passwd

Exiting shell or logout: exit

File system hierarchy

= /root — root user's home directory

= /dev — essential devices

= /boot — boot loader files, eg. kernel

= /etc — system-wide configuration files

= /proc — virtual filesystem documenting kernel & process status as text files
= /bin — common Linux command binaries

= /shin — essential system binaries

= [lib — libraries essential for binaries in /bin and /sbin

= /var — variable files whose content continually changes during operation, eg. logs
= [usr — user applications

= /home — users home directories

= /media — mount point for removable media, eg. cdrom, usb drive,

File system hierarchy

bin etc home 1lib opt proc tmp usr

anne sam . bin include 1local share sSrc

acyclic diff dot gc neato

Read only file viewers

less file-name
more file-name

cat file-name — concatenates file and prints to
standard output

tail -f file-name — outputs (& follows) last portion
of a file

diff file-name1 file-name2 — compare files line
by line

File editors

pico — text based editor for beginners

nano — text based editor for beginners

vi — text based editor for advanced users
gvim — GUI for vi editor

emacs — graphical editor

gedit — another graphical editor from Gnome

Anonymous Pipe

Set of process chained by their standard streams

Output of each process (stdout) feeds directly as input
(stdin) to next process

Each connection implemented by an anonymous pipe |

By default standard errror streams (stderr) of the
processes are merged and directed to the console, and
not passed through the pipe

Ex. Is -al | grep file-name

Anonymous Pipe

Text terminal

[Keyboard

Program 1

stderr
stdout/stdin

h stdout/stdin

Program 3

Named Pipe (FIFO)

Uses filesystem, unlike conventional anonymous
pipe

Two separate processes can access the same
pipe by hame

Explicitly created using mkfifo or mknod
mkfifo my_pipe

Ex. Is -al > my_pipe

cat < my_pipe

/O Redirection

= command > filename
Writes the output of command to filename
= command >> filename

Writes output of command to end of
filename

= command < filename
command takes input from filename

Shell

Shell accepts commands and passes on to the
kernel

Shell is a command language interpreter

Tip: to find all available shells in your system,
type cat /etc/shells

Tip: to find your current shell, type
echo $SHELL

Shell script

= Sequential series of shell commands written
on a text file

Why shell script?

Useful to create your own commands

Can take input from user, file and output them
on screen

Saves time
Automates useful tasks
System administration can also be automated

Shell script example

#

#

Script to print user information who currently login , current date & time
#

clear

echo "Hello $USER"

echo "Today is \c ";date

echo "Number of user login : \c" ; who | wc -
echo "Calendar™

cal

exit 0

Variables in Shell

= System variables — created and maintained by

the operating system. Defined in CAPITAL
LETTERS

= User defined variables (UDV) — created and
maintained by the user. Defined in lower case.

System Variables

BASH=/bin/bash
BASH_VERSION=1.14.7(1)
COLUMNS=80
HOME=/home/xxxx

LINES=25
LOGNAME=students
OSTYPE=Linux
PATH=/usr/bin:/sbin:/bin:/usr/sbin
PS1=[\u@\h \W]\$
PWD=/home/students/Common
SHELL=/bin/bash
USERNAME=vivek

Our shell name

Our shell version name

No. of columns for our screen
Our home directory

No. of columns for our screen
students Our logging name
Our Os type

Our path settings

Our prompt settings

Our current working directory

Our shell name

User name who is currently login to this

PC

User Defined Variables

Variable name = value

Rules for variables

Variable name must begin with alphanumeric
or _followed by alphanumeric

No spaces on either side of =

Case sensitive

Special characters like ?,*, etc cannot be used
NULL variable is defined as:

VAR=

VAR=""

Rules for variables

Variable name must begin with alphanumeric
or _followed by alphanumeric

No spaces on either side of =

Case sensitive

Special characters like ?,*, etc cannot be used
NULL variable is defined as:

VAR=

VAR=""

Print variables

echo $variable-name

Example

Script to test MY knowledge about variables!

#

myname=Vivek

myos = Debian

myno=>5

echo "My name is $myname"

echo "My os is $myos"

echo "My number is myno, can you see this number"

Shell arithmetics

expr var1l math-operator var2

Ex. echo expr1+ 3

About Quotes

Double quotes Removes

Single quotes

Back quotes

meaning of
anything
enclosed
(except $
and \)
Anything
enclosed
remains
unchanged

To execute a
command

Examples of quotes

= echo “Today is date”
= echo “Today is date ”

Read statement

read variable1, variable2,, variableN

EX.

echo "Your first name please:"

read fname

echo "Hello $fname, Lets be friend!"

Conditional statement

if condition

then
execute if condition is true or exit

status is 0

else
execute if condition not true

fi

Condition testing

test expression or [expression]
Works with integer, file types, character strings

Mathematical Comparators in
[expr]

-eq Equal to

-ne Not equal to

-It Less than

-le Less than equal to
-gt Greater than

-ge Greater than equal to

String Comparisons in [expr]

string1 = string2 Equal to
string1 != string2 Not equal to
string string not null or not defined
-n string string not null and does exist

-z string string null and does exist

File testing in [expr]

-s file
-f file
-d file
-w file
-r file
-X file

Non empty file

File exists and not a directory
Directory exists and not a file
Writeable file

Read only file

Executable file

Logical Operators in Shell Scripts

I expression NOT
expresssion1 -a expression2 AND
expression1 -0 expression2 OR

“For” Loop in Shell Script

for ((expr1; expr2; expr3))
do

..... execute until expr2 is true
done #evaluate expr3

Ex.
for ((i=0;i<=5;i++))
do
echo $i
done

“While” Loop in Shell Script

while [condition]
do

Execute when condition is true
done

Wild Cards

Matches any string or
group of characters

Matches any single
character

Matches any one of
the enclosed
characters

Note: A pair of characters
separated with — denotes a
rangem ex. [a-C]

If first character is " or !, then
characters not enclosed is
matched, ex. [la-r]

Exit status

= Once a command is executed, it returns two
types of values:

1. return value zero (0): command successful

2. return value non-zero: command
unsuccessful or error executing command

= This value is known as Exit Status

= To determine Exit Status, use $? variable of
shell

Example of Exit Status

= rm unknown-file
echo $?

= |s
echo $?

Shell script example

#!/bin/bash
This script clears the terminal, displays a greeting and gives information
about currently connected users. The two example variables are set and displayed.

clear # clear terminal window
echo "The script starts now."

echo "Hi, SUSER!" # dollar sign is used to get content of variable
echo

echo "l will now fetch you a list of connected users:"
echo

w # show who is logged on and

echo # what they are doing

echo "I'm setting two variables now."

COLOUR="black"# set a local shell variable

VALUE="9" # set a local shell variable

echo "This is a string: $COLOUR" # display content of variable
echo "And this is a number: $VALUE" # display content of variable
echo

echo "I'm giving you back your prompt now."
echo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

