- 1. Three people (nicknamed A, B, C) are repeatedly tossing a coin in turns, starting with A, in that order (A-B-C-A-B... *etc.*). The first one to get a heads will win. The coin is biased and has 20% chance of falling heads at each toss. Find the probability that A wins the game.
- 2. In a laboratory frame a particle (A) of rest mass  $m_A = 4m$  moving at a speed  $v_A = \frac{3c}{5}$ along +x axis collides heads on with another particle (B) of rest mass  $m_B = 3m$ moving at a speed  $v_B = \frac{4c}{5}$  along -x axis. If a single particle (C) is produced in the collision find the rest mass of the particle C (ignoring any energy loss due to the collision).
- 3. Consider a particle, moving in one dimension under the influence of the potential  $V(x) = \frac{1}{4}kx^4$ . What will the phase trajectory of the particle look like, if the numerical value of k is 2/m? A few example trajectories are given below:



4. The eigenvalues  $\lambda_m$ ,  $(m = 0, 1, 2, \dots, n-1)$  of the following  $n \times n$  matrix are

| $a_1$            | $a_2$ | • • • | $a_n$     |
|------------------|-------|-------|-----------|
| $a_n$            | $a_1$ | •••   | $a_{n-1}$ |
| ·                | •     |       |           |
| •                |       |       |           |
| $\backslash a_2$ | $a_3$ | •••   | $a_1$ /   |

5. Consider a three-state system having energies equal to 0,  $k_BT$ ,  $3k_BT$ , with  $k_B$  being the Boltzmann constant and T being the temperature. If N classical particles are distributed among the three states, and the average energy of the system is  $200k_BT$ , find the approximate value of N.

- 6. A quantum harmonic oscillator with frequency  $\omega$  is in a state represented by wave function  $\psi(x) = \phi_1(x) - 2\phi_2(x) + 3\phi_3(x)$ , where  $\phi_n$  represents eigenfunction of the harmonic oscillator corresponding to  $n^{\text{th}}$  excited state. Find the expectation value of energy in the state  $\psi(x)$  in units of  $\hbar\omega$ .
- 7. The potential energy of a diatomic molecule is given in terms of the interatomic distance r by the expression,  $U(r) = -a/r^2 + b/r^{10}$ . Given:  $a = 1.44 \times 10^{-39} \text{ J-m}^2$  and  $b = 2.19 \times 10^{-115} \text{ J-m}^{10}$ , find the equilibrium spacing of the two atoms.
- 8. The internal energy of a gaseous system is given by

$$U = 2.5PV + K$$

where P and V denote pressure and volume of the gas and K is a constant. What is the equation for the path of system in P - V plane, when the system is undergoing an adiabatic change? (*Hint*: find an equation of the form  $P^aV^b$  = constant where you have to identify a and b).